Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 582-593, 2020.
Article in English | WPRIM | ID: wpr-827210

ABSTRACT

Camptotheca acuminata produces camptothecin (CPT), a monoterpene indole alkaloid (MIA) that is widely used in the treatment of lung, colorectal, cervical, and ovarian cancers. Its biosynthesis pathway has attracted significant attention, but the regulation of CPT biosynthesis by the APETALA2/ethylene-responsive factor (AP2/ERF) transcription factors (TFs) remains unclear. In this study, a systematic analysis of the AP2/ERF TFs family in C. acuminata was performed, including phylogeny, gene structure, conserved motifs, and gene expression profiles in different tissues and organs (immature bark, cotyledons, young flower, immature fruit, mature fruit, mature leaf, roots, upper stem, and lower stem) of C. acuminata. A total of 198 AP2/ERF genes were identified and divided into five relatively conserved subfamilies, including AP2 (26 genes), DREB (61 genes), ERF (92 genes), RAV (18 genes), and Soloist (one gene). The combination of gene expression patterns in different C. acuminata tissues and organs, the phylogenetic tree, the co-expression analysis with biosynthetic genes, and the analysis of promoter sequences of key enzymes genes involved in CPT biosynthesis pathways revealed that eight AP2/ERF TFs in C. acuminata might be involved in CPT synthesis regulation, which exhibit relatively high expression levels in the upper stem or immature bark. Among these, four genes (CacAP2/ERF123, CacAP2/ERF125, CacAP2/ERF126, and CacAP2/ERF127) belong to the ERF-B2 subgroup; two genes (CacAP2/ERF149 and CacAP2/ERF152) belong to the ERF-B3 subgroup; and two more genes (CacAP2/ERF095 and CacAP2/ERF096) belong to the DREB-A6 subgroup. These results provide a foundation for future functional characterization of the AP2/ERF genes to enhance the biosynthesis of CPT compounds of C. acuminata.

2.
China Journal of Chinese Materia Medica ; (24): 4174-4179, 2014.
Article in Chinese | WPRIM | ID: wpr-310921

ABSTRACT

Based on the transcriptome database of Salvia miltiorrhiza, specific primers were designed to clone a full-length cDNA of ent-kaurene oxidase synthase (SmKOL) using the RACE strategy. ORF Finder was used to find the open reading frame of SmKOL cDNA, and ClustalW has been performed to analysis the multiple amino acid sequence alignment. Phylogenetic tree has been constructed using MEGA 5.1. The transcription level of SmKOL from the hairy roots induced by elicitor methyl jasmonate (MeJA) was qualifiedby real-time quantitative PCR. The full length of SmKOL cDNA was of 1 884 bp nucleotides encoding 519 amino acids. The molecular weight of the SmKOL protein was about 58.88 kDa with isoelectric point (pI) of 7.62. Results of real-time quantitative PCR analyses indicated that the level of SmKOL mRNA expression in hairy roots was increased by elicitor oMeJA, and reached maximum in 36 h. The full-length cDNA of SmKOL was cloned from S. miltiorrhiza hairy root, which provides a target gene for further studies of its function, gibberellin biosynthesis and regulation of secondary metabolites.


Subject(s)
Amino Acid Sequence , Cloning, Molecular , Computational Biology , Methods , Cytochrome P-450 Enzyme System , Chemistry , Genetics , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , Salvia miltiorrhiza
SELECTION OF CITATIONS
SEARCH DETAIL